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CHAPTER 1
Introduction: The Mathematical

Image

prime numbers. If asked for a typical bit of real mathematics, your

friendly neighbourhood mathematician is as likely to give this example
as any. First, we need to know that some numbers, called ‘composite’, can be
divided without remainder or broken into factors (e.g. 6 = 2 X 3,561 =3 X 11
X 17), while other numbers, called ‘prime’, cannot (e.g. 2,3, 5, 7, 11, 13, 17,
...). Now we can ask: How many primes are there? The answer is at least as old
as Euclid and is contained in the following.

l et’s begin with a nice example, the proof that there are infinitely many

Theorem: There are infinitely many prime numbers.

Proof: Suppose, contrary to the theorem, that there is only a finite num-
ber of primes. Thus, there will be a largest which we can call p. Now
define a number n as 1 plus the product of all the primes:

n = (2X3X53XTXI1IIX...Xp)+1

Is n itself prime or composite? If it is prime then our original supposi-
tion is false, since n is larger than the supposed largest prime p. So now
let’s consider it composite. This means that it must be divisible (with-
out remainder) by prime numbers. However, none of the primes up to p
will divide » (since we would always have remainder 1), so any num-
ber which does divide n must be greater than p. This means that there
is a prime number greater than p after all. Thus, whether n is prime or
composite, our supposition that there is a largest prime number is false.
Therefore, the set of prime numbers is infinite.
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The proof is elegant and the result profound. Still, it is typical mathematics; so,
it’s a good example to reflect upon. In doing so, we will begin to see the elements
of the mathematical image, the standard conception of what mathematics is. Let’s
begin a list of some commonly accepted aspects. By ‘commonly accepted’ I mean
that they would be accepted by most working mathematicians, by most educated
people, and probably by most philosophers of mathematics, as well. In listing
them as part of the common mathematical image we need not endorse them. Later
we may even come to reject some of them — I certainly will. With this caution in
mind, let’s begin to outline the standard conception of mathematics.

Certainty The theorem proving the infinitude of primes seems established
beyond a doubt. The natural sciences can’t give us anything like this. In spite of
its wonderful accomplishments, Newtonian physics has been overturned in
favour of quantum mechanics and relativity. And no one today would bet too
heavily on the longevity of current theories. Mathematics, by contrast, seems
the one and only place where we humans can be absolutely sure we got it right.

Objectivity Whoever first thought of this theorem and its proof made a great
discovery. There are other things we might be certain of, but they aren’t discov-
eries: ‘Bishops move diagonally.” This is a chess rule; it wasn’t discovered; it
was invented. It is certain, but its certainty stems from our resolution to play the
game of chess that way. Another way of describing the situation is by saying
that our theorem is an objective truth, not a convention. Yet a third way of mak-
ing the same point is by saying that Martian mathematics is like ours, while
their games might be quite different.

Proof is essential With a proof, the result is certain; without it, belief should
be suspended. That might be putting it a bit too strongly. Sometimes math-
ematicians believe mathematical propositions even though they lack a proof.
Perhaps we should say that without a proof a mathematical proposition is not
justified and should not be used to derive other mathematical propositions.
Goldbach’s conjecture is an example. It says that every even number is the sum
of two primes. And there is lots of evidence forit,e.g. 4 =2+ 2,6 =3+ 3,8 =
3+5,10=5+35,12 =7+ 5, and so on. It’s been checked into the billions
without a counter-example. Biologists don’t hesitate to conclude that all ravens
are black based on this sort of evidence; but mathematicians (while they might
believe that Goldbach’s conjecture is true) won’t call it a theorem and won’t use
it to establish other theorems — not without a proof.

Let’s look at a second example, another classic, the Pythagorean theorem.
The proof below is modern, not Euclid’s.

Theorem: In any right-angled triangle, the square of the hypotenuse is
equal to the sum of the squares on the other two sides.
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Figure 1.1

Proof: Consider two square figures, the smaller placed in the larger,
making four copies of a right-angled triangle Aabc (Figure 1.1). We
want to prove that F=d+b.

The area of the outer square = (a + .b)2 =’ +4x% (area of Aabc) =
¢ + 2ab, since the area of each copy of Aabc is % ab. From
algebra we have (a + b)2 =d + 2ab + b Subtracting 2ab from
each, we conclude cE=a +b.

This brings out another feature of the received view of mathematics.

Diagrams There are no illustrations or pictures in the proofs of most
theorems. In some there are, but these are merely a psychological aide. The dia-
gram helps us to understand the theorem and to follow the proof — nothing
more. The proof of the Pythagorean theorem or any other is the verbal/symbolic
argument. Pictures can never play the role of a real proof.

Remember, in saying this I'm not endorsing these elements of the mathemat-
ical image, but merely exhibiting them. Some of these I think right, others,
including this one about pictures, quite wrong. Readers might like to form their
own tentative opinions as we look at these examples.

Misleading diagrams Pictures, at best, are mere psychological aids; at worst
they mislead us — often badly. Consider the infinite series

Zi—1+l+ .
i i T

N=1

which we can illustrate with a picture (Figure 1.2):
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Figure 1.2 Shaded blocks correspond to terms in the series
The sum of this series is 1°/6 = 1.6449 .. . In the picture, the sum is equal
to the shaded area. Let’s suppose we paint the area and that this takes one can

of paint.
Next consider the so-called harmonic series

Here’s the corresponding picture (Figure 1.3):
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Figure 1.3

The steps keep getting smaller and smaller, just as in the earlier case, though not
quite so fast. How big is the shaded area? Or rather, how much paint will be
required to cover the shaded area? Comparing the two pictures, one would be
tempted to say that it should require only slightly more — perhaps two or three
cans of paint at most. Alas, such a guess couldn’t be further off the mark. In fact,
there isn’t enough paint in the entire universe to cover the shaded area — it’s infi-
nite. The proof goes as follows. As we write out the series, we can group the terms:
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The size of the first group is obviously 1. In the second group the terms are
between % and 1, so the size is between 2 X % and 2 X i, that is, between % and
1. In the next grouping of four, all terms are bigger than 1/8, so the sum is again
between 3 and 1. The same holds for the next group of 8 terms; it, too, has a sum
between % and 1. Clearly, there are infinitely many such groupings, each with
a sum greater than 4. When we add them all together, the total size is infinite.
It would take more paint than the universe contains to cover it all. Yet, the picture
doesn’t give us an inkling of this startling result.

One of the most famous results of antiquity still amazes; it is the proof of the
irrationality of the square root of 2. A rational number is a ratio, a fraction, such
as 3/4 or 6937/528, which is composed of whole numbers. V9 = 3 is rational
and so is V(9/16) = 3/4; but /2 is not rational as the following theorem shows.

Theorem: The square root of 2 is not a rational number.

Proof: Suppose, contrary to the theorem, that V2 is rational, i.e. suppose
that there are integers p and g such that V2 = p/q. Or equivalently, 2 =
(p/q)2 — pzlqz. Let us further assume that p/g is in lowest terms. (Note
that 3/4 = 9/12 = 21/28, but only the first expression is in lowest terms.)

Rearranging the above expression, we have o = Zqz. Thus, p2 is
even (because 2 is a factor of the right side). Hence, p is even (since the
square of an odd number is odd). So it follows that p = 2r, for some
number r. From this we get 2q2 - p2 = (2r)’ = 4" Thus, q'Z = 27,
which implies that q2 is even, and hence that g is even.

Now we have the result that both p and ¢ are even, hence both divis-
ible by 2, and so, not in lowest terms as was earlier supposed. Thus, we
have arrived at the absurdity that p/g both is and is not in lowest terms.
Therefore, our initial assumption that V2 is a rational number is false.

Classical logic Notice the structure of the proof of the irrationality of V2. We
made a supposition. We derived a contradiction from this, showing the supposi-
tion is false. Then we concluded that the negation of the supposition is true. The
logical principles behind this are: first, no proposition is both true and false
(non-contradiction) and second, if a proposition is false, then its negation is true
(excluded middle). Classical logic is a working tool of mathematics. Without
this tool, much of traditional mathematics would crumble.

Strictly speaking, the proof of the irrationality of V2 is acceptable to con-
structive mathematicians, even though they deny the general legitimacy of clas-
sical logic. The issue will come up in more detail in a later chapter. The proof
just given nicely illustrates reduction ad absurdum reasoning. It is also one of
the all time great results, which everyone should know as a matter of general
culture, just as everyone should know Hamlet. This is my excuse for using an
imperfect example to make the point about classical logic.




6 PHILOSOPHY OF MATHEMATICS

Sense experience All measurement in the physical world works perfectly well
with rational numbers. Letting the standard metre stick be our unit, we can
measure any length with whatever desired accuracy our technical abilities will
allow; but the accuracy will always be to some rational number (some fraction
of a metre). In other words, we could not discover irrational numbers or incom-
mensurable segments (i.e. lengths which are not ratios of integers) by physical
measurement. It is sometimes said that we learn 2 + 2 = 4 by counting apples
and the like. Perhaps experience plays a role in grasping the elements of the nat-
ural numbers. But the discovery of the irrationality of Y2 was an intellectual
achievement, not at all connected to sense experience.

Cumulative history The natural sciences have revolutions. Cherished beliefs
get tossed out. But a mathematical result, once proven, lasts forever. There are
mathematical revolutions in the sense of spectacular results which yield new
methods to work with and which focus attention in a new field - but no theorem
is ever overturned. The mathematical examples I have so far discussed all pre-
date Ptolemaic astronomy, Newtonian mechanics, Christianity and capitalism;
and no doubt they will outlive them all. They are permanent additions to
humanity’s collection of glorious accomplishments.

Computer proofs Computers have recently played a dramatic role in math-
ematics. One of the most celebrated results has to do with map colouring. How
many colours are needed to insure that no adjacent countries are the same colour?

Theorem: Every map is four-colourable.

I won’t even try to sketch the proof of this theorem. Suffice it to say that a com-
puter was set the task of checking a very large number of cases. After a great
many hours of work, it concluded that there are no counter-examples to the the-
orem: every map can be coloured with four colours. Thus, the theorem was
established.

It’s commonplace to use a hand calculator to do grades or determine our
finances. We could do any of these by hand. The little gadget is a big time
saver and often vastly more accurate than our efforts. Otherwise, there’s really
nothing new going on. Similarly, when a supercomputer tackles a big problem
and spends hours on its solution, there is nothing new going on there either.
Computers do what we do, only faster and perhaps more accurately. Mathematics
hasn’t changed because of the introduction of computers. A proof is still a proof,
and that’s the one and only thing that matters.

Solving problems There are lots of things we might ask, but have little chance
of answering: ‘Does God exist?” “Who makes the best pizza?” These seem per-
fectly meaningful questions, but the chances of finding answers seems hopeless.
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By contrast, it seems that every mathematical question can be answered and
every problem solved. Is every even number (greater than 2) equal to the sum of
two primes? We don’t know now, but that’s because we’ve been too stupid so
far. Yet we are not condemned to ignorance about Goldbach’s conjecture the
way we are about the home of the best pizza. It’s the sort of question that we
should be able to answer, and in the long run we will.

Having said this, a major qualification is in order. In fact, we may have to
withdraw the claim. So far, in listing the elements of the mathematical image
we’ve made no distinction among mathematicians, philosophers and the
general public. But at this point we may need to distinguish. Recent results
such as Gédel’s incompleteness theorem, the independence of the continuum
hypothesis and others have led many mathematicians and philosophers of
mathematics to believe that there are problems which are unsolvable in
principle. The pessimistic principle would seem to be part of the mathemati-
cal image.

Well, enough of this. We’ve looked at several notions that are very widely
shared and, whether we endorse them or not, they seem part of the common
conception of mathematics. In sum, these are a few of the ingredients in the

mathematical image:

(1) Mathematical results are certain

(2) Mathematics is objective

(3) Proofs are essential

(4) Diagrams are psychologically useful, but prove nothing

(5) Diagrams can even be misleading

(6) Mathematics is wedded to classical logic

(7) Mathematics is independent of sense experience

(8) The history of mathematics is cumulative

(9) Computer proofs are merely long and complicated regular proofs
(10) Some mathematical problems are unsolvable in principle

More could be added, but this is grist enough for our mill. Here we have the
standard conception of mathematics shared by most mathematicians and non-
mathematicians, including most philosophers. Yet not everyone accepts this pic-
ture. Each of these points has its several critics. Some deny that mathematics
was ever certain and others say that, given the modern computer, we ought (o
abandon the ideal of certainty in favour of much more experimental math-
ematics. Some deny the objectivity of mathematics, claiming that it is a human
invention after all, adding that though it’s a game like chess, it is the greatest
game ever played. Some deny that classical logic is indeed the right tool for
mathematical inference, claiming that there are indeterminate (neither true nor
false) mathematical propositions. And, finally, some would claim great virtues
for pictures as proofs, far beyond their present lowly status.
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We’ll look at a number of issues in the philosophy of mathematics, some tra-
ditional, some current, and we’ll see how much of the mathematical image
endures this scrutiny. Don’t be surprised should you come to abandon at least
some of it. T will.

Further Reading

Many come to the philosophy of mathematics before a serious encounter with
mathematics itself. If you're looking for a good place to get your feet wet, try
an old classic, by Courant, Robins, and Stewart, What is Mathematics? If you're
trying to teach yourself mathematics using standard textbooks, then T strongly
urge reading popular books, as well. Rough analogies, anecdotes, and even
gossip are an important part of any mathematical education. Biographies are
important, too. For a collection of brief biographies of several contemporaries,
try Albers and Alexanderson (eds) Mathematical People. There are several
introductory books in the philosophy of mathematics. Shapiro, Talking About
Mathematics is particularly nice; it covers traditional topics and Shapiro’s own
*structuralism’.
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